
© 2016 IBM Corporation

Compressed Linear Algebra for Large-Scale
Machine Learning

Ahmed Elgohary2, Matthias Boehm1, Peter J. Haas1,
Frederick R. Reiss1, Berthold Reinwald1
1 IBM Research – Almaden
2 University of Maryland, College Park

IBM Research

© 2016 IBM Corporation

Motivation

§  Problem of memory-centric performance

–  Iterative ML algorithms with read-only data access
–  Bottleneck: I/O-bound matrix vector multiplications

 è Crucial to fit matrix into memory
(single node, distributed, GPU)

§  Goal: Improve performance of declarative
ML algorithms via lossless compression

§  Baseline solution
–  Employ general-purpose compression techniques
–  Decompress matrix block-wise for each operation
–  Heavyweight (e.g., Gzip): good compression ratio / too slow
–  Lightweight (e.g., Snappy): modest compression ratio / relatively fast

2 IBM Research

while(!converged)	{	
		…	q	=	X	%*%	v	…					
}	

X

© 2016 IBM Corporation

Our Approach: Compressed Linear Algebra (CLA)

§  Key idea

–  Use lightweight database compression techniques
–  Perform LA operations on compressed matrices

§  Goals of CLA

–  Operations performance close to uncompressed
–  Good compression ratios

3 IBM Research

X

while(!converged)	{	
		…	q	=	X	%*%	v	…					
}	

10x -
100x

© 2016 IBM Corporation

Our Setting: Apache SystemML

§  Overview

–  Declarative ML algorithms
with R-like syntax

–  Hybrid runtime plans
single-node + MR/Spark

§  ML Program Compilation
–  Statement blocks à DAGs
–  Optimizer rewrites
è Automatic compression

§  Distributed Matrices
–  Block matrices (dense/sparse)
–  Single node: matrix = block
è CLA integration via new block

§  Data Characteristics
–  Tall & skinny; non-uniform sparsity
–  Low col. card.; col. correlations

4 IBM Research

LinregCG (Conjugate Gradient)

1:		X	=	read($1);	#	n	x	m	matrix	
2:		y	=	read($2);	#	n	x	1	vector	
3:		maxi	=	50;	lambda	=	0.001;		
4:		intercept	=	$3;	
5:		...	
6:		r	=	-(t(X)	%*%	y);		
7:		norm_r2	=	sum(r	*	r);	p	=	-r;	
8:		w	=	matrix(0,	ncol(X),	1);	i	=	0;	
9:		while(i<maxi	&	norm_r2>norm_r2_trgt)	{	
10:				q	=	(t(X)	%*%	(X	%*%	p))+lambda*p;	
11:				alpha	=	norm_r2	/	sum(p	*	q);	
12:				w	=	w	+	alpha	*	p;	
13:				old_norm_r2	=	norm_r2;	
14:				r	=	r	+	alpha	*	q;	
15:				norm_r2	=	sum(r	*	r);	
16:				beta	=	norm_r2	/	old_norm_r2;	
17:				p	=	-r	+	beta	*	p;	i	=	i	+	1;		
18:	}	
19:	write(w,	$4,	format="text");	
	

è Column-based compression schemes

Xv	
	

vTX	
	

XT(w	*(Xv))	
	

XTX	

© 2016 IBM Corporation

Matrix Compression Framework

§  Overview compression framework

–  Column-wise matrix compression (values + compressed offset lists)
–  Column co-coding (column groups, encoded as single unit)
–  Heterogeneous column encoding formats

§  Column encoding
formats
–  Offset-List (OLE)
–  Run-Length (RLE)
–  Uncompressed

Columns (UC)

§  Automatic compression planning

–  Selects column groups and encoding formats per group (data dependent)

5 IBM Research

© 2016 IBM Corporation

Operations over Compressed Matrix Blocks

§  Matrix-vector multiplication

–  Naïve: for each tuple, pre-aggregate values, add values at offsets to q
 Example: q = X v, with

–  Cache-conscious: Horizontal,
segment-aligned scans, maintain positions

§  Vector-matrix multiplication
–  Naïve: cache-unfriendly on input (v)
–  Cache-conscious: again use horizontal, segment-aligned scans

6 IBM Research

9*11=99 0
0
0
0
0
0
0
0
0
0

90.2 55 25 54 6.3 99
99
99
99
0
0

99
99
99
0

99
99
99
99
0

90.2
99
99
99
0

154
99

154
99
0

90.2
99
99

154
0

154
124
154
99
25

90.2
124
124
154
25

154
124
154
153
25

144.2
124
124
154
25

160.3
124

160.3
153
31.3

144.2
124
124

160.3
25

è cache unfriendly
on output (q)

9 160.3
133

160.3
162
31.3

153.2
133
124

160.3
34

162.3
134.5
160.4
162.8
32.5
155

133.1
125.8
161.4
34.3

162.3
134.5
160.4
162.8
32.5
155

133.1
125.8
161.4
34.3

v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2)

© 2016 IBM Corporation

Compression Planning

§  Goals and general principles

–  Low planning costs è Sampling-based techniques
–  Conservative approach è Prefer underestimating SUC/SC + corrections

§  Estimating compressed size: SC = min(SOLE, SRLE)
–  # of distinct tuples di: “Hybrid generalized jackknife” estimator [JASA’98]
–  # of OLE segments bij: Expected value under maximum-entropy model
–  # of non-zero tuples zi: Scale from sample with “coverage” adjustment
–  # of runs rij: maxEnt model + independent-interval approx. (rijk in interval k

~ Ising-Stevens + border effects)

§  Column Group Partitioning
–  Exhaustive grouping: O(mm)
–  Brute-force greedy grouping: O(m3)

•  Start with singleton groups, execute merging iterations
•  Merge groups with max compression ratio

è Bin-packing-based grouping

7 IBM Research

© 2016 IBM Corporation

Compression Algorithm

§  Transpose input X
§  Draw random

sample of rows S
§  Classify

–  For each column
•  Estimate compression ratio

(with SUC = ziα)
•  Classify into CC and CUC

§  Group
–  Bin packing of columns
–  Brute-force greedy per bin

§  Compress
–  Extract uncomp. offset lists
–  Get exact compression ratio
–  Apply graceful corrections
–  Create UC Group

8 IBM Research

© 2016 IBM Corporation

Experimental Setting

§  Cluster setup

–  1 head node (2x4 Intel E5530, 64GB RAM), and
6 worker nodes (2x6 Intel E5-2440, 96GB RAM, 12x2TB disks)

–  Spark 1.4 with 6 executors (24 cores, 60GB), 25GB driver memory

§  Implementation details
–  CLA integrated into SystemML (new rewrite injects compress operator)
–  For Spark/MR: individual matrix blocks compressed independently

§  ML programs and data
–  6 full-fledged ML algorithms
–  5 real-world data sets + InfiMNIST data generator (up to 1.1TB)

§  Selected baselines
–  Apache SystemML 0.9 (Feb 2016) with uncompressed LA ops (ULA)
–  General-purpose compression with ULA (Gzip, Snappy)

9 IBM Research

© 2016 IBM Corporation

Micro-Benchmarks: Compression Ratios and Time

§  Compression ratios (SUC/SC, compared to uncompressed in-memory size)

§  Compression time

10 IBM Research

Dataset Dimensions Sparsity Size (GB) Gzip Snappy CLA
Higgs 11M x 28 0.92 2.5 1.93 1.38 2.03

Census 2.5M x 68 0.43 1.3 17.11 6.04 27.46
Covtype 600K x 54 0.22 0.14 10.40 6.13 12.73

ImageNet 1.2M x 900 0.31 4.4 5.54 3.35 7.38
Mnist8m 8.1M x 784 0.25 19 4.12 2.60 6.14

Gzip 88-291 MB/s
Snappy 232-639 MB/s

CLA not required

Decompression Time
(single-threaded, native libs,
includes deserialization)

© 2016 IBM Corporation

Micro-Benchmarks: Vector-Matrix Multiplication

11 IBM Research

è Smaller
memory bandwidth

requirements of CLA

Up to
5.4x

Single-Threaded Multi-Threaded

© 2016 IBM Corporation

End-to-End Experiments: L2SVM

§  L2SVM over Mnist dataset

–  End-to-end runtime, including HDFS read + compression
–  Aggregated mem: 216GB

12 IBM Research

© 2016 IBM Corporation

End-to-End Experiments: Other Iterative ML Algorithms

§  In-memory dataset

Mnist40m (90GB)

§  Out-of-core dataset
Mnist240m (540GB)
–  Up to 26x and 8x

13 IBM Research

Algorithm ULA Snappy CLA
MLogreg 83,153s 27,626s 4,379s

GLM 74,301s 23,717s 2,787s
LinregCG 2,959s 1,493s 902s

Algorithm ULA Snappy CLA
MLogreg 630s 875s 622s

GLM 409s 647s 397s
LinregCG 173s 220s 176s

© 2016 IBM Corporation

Conclusions

§  Summary

–  CLA: Database compression + LA over compressed matrices
–  Column-compression schemes and ops, sampling-based compression
–  Performance close to uncompressed + good compression ratios

§  Conclusions
–  General feasibility of CLA, enabled by declarative ML
–  Broadly applicable (blocked matrices, LA, data independence)

§  SYSTEMML-449: Compressed Linear Algebra
–  Transferred back into upcoming Apache SystemML 0.11 release
–  Testbed for extended compression schemes and operations

14 IBM Research

© 2016 IBM Corporation 15 IBM Research

SystemML is Open Source:
Apache Incubator Project since 11/2015

Website: http://systemml.apache.org/
Sources: https://github.com/apache/incubator-systemml

Upcoming:
Tue Sep 6, 2pm
I2: SystemML on Spark

Wed Sep 7, 11.15am
D3b: CLA Poster

Fri Sep 9, 9am-5.30pm
Tutorial @BOSS

© 2016 IBM Corporation

Backup: Roofline Analysis Matrix-Vector Multiply

§  Single Node: 2x6 E5-2440 @2.4GHz–2.9GHz, DDR3 RAM @1.3GHz (ECC)

–  Max mem bandwidth (local): 2 sock x 3 chan x 8B x 1.3G trans/s à 2 x 32GB/s
–  Max mem bandwidth (single-sock ECC / QPI full duplex) à 2 x 12.8GB/s
–  Max floating point ops: 12 cores x 2*4dFP-units x 2.4GHz à 2 x 115.2GFlops/s

§  Roofline Analysis
–  Processor

performance
–  Off-chip

memory traffic

16 IBM Research

[S. Williams, A.
Waterman, D. A.
Patterson: Roofline:
An Insightful Visual
Performance Model
for Multicore
Architectures.
Commun. ACM
52(4): 65-76 (2009)]

SystemML
Mv

SystemML
Mt(Mv)

SystemML
MM (n=768)

36x

è IO-bound matrix-vector mult

© 2016 IBM Corporation

Backup: Common Data Characteristics

§  Non-Uniform

Sparsity

§  Low Column
cardinalities

§  Column
Correlation
–  For Census:

10.1x à 27.4x

17 IBM Research

Higgs Census

Covtype Mnist8m ImageNet

© 2016 IBM Corporation

Backup: Column Encoding Formats

§  Data

Layout
–  OLE
–  RLE

§  Offset-List Encoding
–  Offset range divided into segments of fixed length ∆s=216

–  Offsets encoded as diff to beginning of its segment
–  Each segments encodes length w/ 2B, followed by 2B per offset

§  Run-Length Encoding
–  Sorted list of offsets encoded as sequence of runs
–  Run starting offset encoded as diff to end of previous run
–  Runs encoded w/ 2B for starting offset and 2B for length
–  Empty/partitioned runs to deal with max 216 diff

18 IBM Research

© 2016 IBM Corporation

Backup: Scalar Operations and Aggregates

§  Scalar

Operations
–  Single-

threaded
–  Up to 1000x

– 10,000x

§  Unary
Aggregates
–  sum(X)	
–  Up to 100x

19 IBM Research

Multi-Threaded

X^2 (sparse-safe) X+7 (sparse-unsafe)

Single-Threaded

© 2016 IBM Corporation

Backup: Comparison CSR-VI (CSR Value Indexed)

Dataset Sparse #Distinct CSR-VI D-VI CLA
Higgs N 8,083,944 1.04 1.90 2.03

Census N 46 3.62 7.99 27.46
Covtype Y 6,682 3.56 2.48 12.73

ImageNet Y 824 2.07 1.93 7.38
Mnist8m Y 255 2.53 N/A 6.14

20 IBM Research

§  Compression Ratio

§  Operations
Performance

MV VM

[K. Kourtis, G. I. Goumas,
N. Koziris: Optimizing
Sparse Matrix-Vector
Multiplication Using Index
and Value Compression,
CF 2008, 87-96]

© 2016 IBM Corporation

Backup: Parameter Influence and Accuracy

§  Sample

Fraction

§  Estimation
Accuracy

21 IBM Research

Compressed Size
(minimum normalized)

Compression Time
(minimum normalized)

Dataset Higgs Census Covtype ImageNet Mnist8m
Excerpt 28.8% 173.8% 111.2% 24.6% 12.1%
CLA Est. 16.0% 13.2% 56.6% 0.6% 39.4%

[C. Constantinescu, M. Lu: Quick Estimation of
Data Compression and De-duplication for Large
Storage Systems. CCP 2011, 98-102]

