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Motivation 
 
§  Problem of memory-centric performance 

–  Iterative ML algorithms with read-only data access 
–  Bottleneck: I/O-bound matrix vector multiplications 

 è Crucial to fit matrix into memory  
(single node, distributed, GPU) 

§  Goal: Improve performance of declarative  
ML algorithms via lossless compression 

§  Baseline solution 
–  Employ general-purpose compression techniques 
–  Decompress matrix block-wise for each operation 
–  Heavyweight (e.g., Gzip): good compression ratio / too slow 
–  Lightweight (e.g., Snappy): modest compression ratio / relatively fast 
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Our Approach: Compressed Linear Algebra (CLA) 
 
§  Key idea 

–  Use lightweight database compression techniques 
–  Perform LA operations on compressed matrices 

 
§  Goals of CLA 

–  Operations performance close to uncompressed 
–  Good compression ratios  
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Our Setting: Apache SystemML  
 
§  Overview 

–  Declarative ML algorithms 
with R-like syntax 

–  Hybrid runtime plans 
single-node + MR/Spark 

§  ML Program Compilation 
–  Statement blocks à DAGs 
–  Optimizer rewrites 
è Automatic compression 

§  Distributed Matrices 
–  Block matrices (dense/sparse) 
–  Single node: matrix = block 
è CLA integration via new block 

§  Data Characteristics 
–  Tall & skinny; non-uniform sparsity 
–  Low col. card.; col. correlations 
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LinregCG (Conjugate Gradient) 
 

1:		X	=	read($1);	#	n	x	m	matrix	
2:		y	=	read($2);	#	n	x	1	vector	
3:		maxi	=	50;	lambda	=	0.001;		
4:		intercept	=	$3;	
5:		...	
6:		r	=	-(t(X)	%*%	y);		
7:		norm_r2	=	sum(r	*	r);	p	=	-r;	
8:		w	=	matrix(0,	ncol(X),	1);	i	=	0;	
9:		while(i<maxi	&	norm_r2>norm_r2_trgt)	{	
10:				q	=	(t(X)	%*%	(X	%*%	p))+lambda*p;	
11:				alpha	=	norm_r2	/	sum(p	*	q);	
12:				w	=	w	+	alpha	*	p;	
13:				old_norm_r2	=	norm_r2;	
14:				r	=	r	+	alpha	*	q;	
15:				norm_r2	=	sum(r	*	r);	
16:				beta	=	norm_r2	/	old_norm_r2;	
17:				p	=	-r	+	beta	*	p;	i	=	i	+	1;		
18:	}	
19:	write(w,	$4,	format="text");	
	

è Column-based compression schemes 

Xv	
	

vTX	
	

XT(w	*(Xv))	
	

XTX	
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Matrix Compression Framework 
 
§  Overview compression framework 

–  Column-wise matrix compression (values + compressed offset lists) 
–  Column co-coding (column groups, encoded as single unit) 
–  Heterogeneous column encoding formats   

§  Column encoding  
formats 
–  Offset-List (OLE) 
–  Run-Length (RLE) 
–  Uncompressed  

Columns (UC) 

 
§  Automatic compression planning 

–  Selects column groups and encoding formats per group (data dependent) 
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Operations over Compressed Matrix Blocks 
 
§  Matrix-vector multiplication 

–  Naïve: for each tuple, pre-aggregate values, add values at offsets to q 
 Example: q = X v, with 

 
 

–  Cache-conscious: Horizontal,  
segment-aligned scans, maintain positions 

§  Vector-matrix multiplication 
–  Naïve: cache-unfriendly on input (v) 
–  Cache-conscious: again use horizontal, segment-aligned scans  
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Compression Planning 
 
§  Goals and general principles 

–  Low planning costs è Sampling-based techniques 
–  Conservative approach è Prefer underestimating SUC/SC + corrections 

§  Estimating compressed size: SC = min(SOLE, SRLE)  
–  # of distinct tuples di: “Hybrid generalized jackknife” estimator [JASA’98]  
–  # of OLE segments bij: Expected value under maximum-entropy model  
–  # of non-zero tuples zi: Scale from sample with “coverage” adjustment 
–  # of runs rij: maxEnt model + independent-interval approx. (rijk in interval k  

~ Ising-Stevens + border effects) 

§  Column Group Partitioning 
–  Exhaustive grouping: O(mm)  
–  Brute-force greedy grouping: O(m3) 

•  Start with singleton groups, execute merging iterations 
•  Merge groups with max compression ratio 

è Bin-packing-based grouping  
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Compression Algorithm 
 
§  Transpose input X 
§  Draw random  

sample of rows S 
§  Classify 

–  For each column 
•  Estimate compression ratio 

(with SUC = ziα) 
•  Classify into CC and CUC 

§  Group 
–  Bin packing of columns 
–  Brute-force greedy per bin  

§  Compress 
–  Extract uncomp. offset lists 
–  Get exact compression ratio 
–  Apply graceful corrections 
–  Create UC Group  
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Experimental Setting 
 
§  Cluster setup 

–  1 head node (2x4 Intel E5530, 64GB RAM), and  
6 worker nodes (2x6 Intel E5-2440, 96GB RAM, 12x2TB disks) 

–  Spark 1.4 with 6 executors (24 cores, 60GB), 25GB driver memory 

§  Implementation details 
–  CLA integrated into SystemML (new rewrite injects compress operator) 
–  For Spark/MR: individual matrix blocks compressed independently 

§  ML programs and data 
–  6 full-fledged ML algorithms  
–  5 real-world data sets + InfiMNIST data generator (up to 1.1TB) 

§  Selected baselines  
–  Apache SystemML 0.9 (Feb 2016) with uncompressed LA ops (ULA) 
–  General-purpose compression with ULA (Gzip, Snappy) 
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Micro-Benchmarks: Compression Ratios and Time 
 
§  Compression ratios (SUC/SC, compared to uncompressed in-memory size) 

§  Compression time 
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Dataset Dimensions Sparsity Size (GB) Gzip Snappy CLA 
Higgs 11M x 28 0.92  2.5 1.93 1.38 2.03 

Census 2.5M x 68 0.43 1.3 17.11 6.04 27.46 
Covtype 600K x 54  0.22 0.14 10.40 6.13 12.73 

ImageNet 1.2M x 900 0.31 4.4 5.54 3.35 7.38 
Mnist8m 8.1M x 784 0.25 19 4.12 2.60 6.14 

Gzip 88-291 MB/s 
Snappy 232-639 MB/s 

CLA not required 

Decompression Time 
(single-threaded, native libs, 
includes deserialization) 
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Micro-Benchmarks: Vector-Matrix Multiplication 
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è Smaller  
memory bandwidth 

requirements of CLA 

Up to 
5.4x 

Single-Threaded Multi-Threaded 
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End-to-End Experiments: L2SVM 
 
§  L2SVM over Mnist dataset 

–  End-to-end runtime, including HDFS read + compression 
–  Aggregated mem: 216GB 
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End-to-End Experiments: Other Iterative ML Algorithms  
 
§  In-memory dataset  

Mnist40m (90GB) 

§  Out-of-core dataset 
Mnist240m (540GB) 
–  Up to 26x and 8x 
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Algorithm ULA Snappy CLA 
MLogreg 83,153s 27,626s 4,379s 

GLM 74,301s 23,717s 2,787s 
LinregCG 2,959s 1,493s 902s 

Algorithm ULA Snappy CLA 
MLogreg 630s 875s 622s 

GLM 409s 647s 397s 
LinregCG 173s 220s 176s 
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Conclusions 
 
§  Summary 

–  CLA: Database compression + LA over compressed matrices 
–  Column-compression schemes and ops, sampling-based compression  
–  Performance close to uncompressed + good compression ratios 

§  Conclusions 
–  General feasibility of CLA, enabled by declarative ML 
–  Broadly applicable (blocked matrices, LA, data independence) 

§  SYSTEMML-449: Compressed Linear Algebra 
–  Transferred back into upcoming Apache SystemML 0.11 release 
–  Testbed for extended compression schemes and operations 
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SystemML is Open Source: 
Apache Incubator Project since 11/2015 

Website: http://systemml.apache.org/  
Sources: https://github.com/apache/incubator-systemml  

Upcoming: 
Tue Sep 6, 2pm 
I2: SystemML on Spark 
 

Wed Sep 7, 11.15am 
D3b: CLA Poster 
 

Fri Sep 9, 9am-5.30pm 
Tutorial @BOSS 
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Backup: Roofline Analysis Matrix-Vector Multiply 
 
§  Single Node: 2x6 E5-2440 @2.4GHz–2.9GHz, DDR3 RAM @1.3GHz (ECC) 

–  Max mem bandwidth (local): 2 sock x 3 chan x 8B x 1.3G trans/s à 2 x 32GB/s 
–  Max mem bandwidth (single-sock ECC / QPI full duplex) à 2 x 12.8GB/s 
–  Max floating point ops: 12 cores x 2*4dFP-units x 2.4GHz à 2 x 115.2GFlops/s 

§  Roofline Analysis 
–  Processor  

performance   
–  Off-chip  

memory traffic 
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[S. Williams, A. 
Waterman, D. A. 
Patterson: Roofline: 
An Insightful Visual 
Performance Model 
for Multicore 
Architectures. 
Commun. ACM 
52(4): 65-76 (2009)] 

SystemML 
Mv 

SystemML 
Mt(Mv) 

SystemML 
MM (n=768) 

36x 

è IO-bound matrix-vector mult 
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Backup: Common Data Characteristics 
 
§  Non-Uniform  

Sparsity  

§  Low Column  
cardinalities  
 

§  Column  
Correlation 
–  For Census: 

10.1x à 27.4x 
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Higgs Census 

Covtype Mnist8m ImageNet 
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Backup: Column Encoding Formats 
 
§  Data  

Layout 
–  OLE 
–  RLE 

 

§  Offset-List Encoding 
–  Offset range divided into segments of fixed length ∆s=216 

–  Offsets encoded as diff to beginning of its segment 
–  Each segments encodes length w/ 2B, followed by 2B per offset 

§  Run-Length Encoding 
–  Sorted list of offsets encoded as sequence of runs 
–  Run starting offset encoded as diff to end of previous run 
–  Runs encoded w/ 2B for starting offset and 2B for length 
–  Empty/partitioned runs to deal with max 216 diff 
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Backup: Scalar Operations and Aggregates 
 
§  Scalar  

Operations 
–  Single- 

threaded 
–  Up to 1000x  

– 10,000x 

 

§  Unary  
Aggregates 
–  sum(X)	
–  Up to 100x 
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Multi-Threaded 

X^2 (sparse-safe) X+7 (sparse-unsafe) 

Single-Threaded 



© 2016 IBM Corporation 

Backup: Comparison CSR-VI (CSR Value Indexed) 
 

Dataset Sparse #Distinct CSR-VI D-VI CLA 
Higgs N 8,083,944 1.04 1.90 2.03 

Census N 46 3.62 7.99 27.46 
Covtype Y 6,682 3.56 2.48 12.73 

ImageNet Y 824 2.07 1.93 7.38 
Mnist8m Y 255 2.53 N/A 6.14 
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§  Compression Ratio 

§  Operations  
Performance 

MV VM 

[K. Kourtis, G. I. Goumas, 
N. Koziris: Optimizing 
Sparse Matrix-Vector 
Multiplication Using Index 
and Value Compression, 
CF 2008, 87-96] 
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Backup: Parameter Influence and Accuracy 
 
§  Sample  

Fraction 

 

§  Estimation 
Accuracy 
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Compressed Size  
(minimum normalized) 

Compression Time  
(minimum normalized) 

Dataset Higgs Census Covtype ImageNet Mnist8m 
Excerpt 28.8% 173.8% 111.2% 24.6% 12.1% 
CLA Est. 16.0% 13.2% 56.6% 0.6% 39.4% 

[C. Constantinescu, M. Lu: Quick Estimation of 
Data Compression and De-duplication for Large 
Storage Systems. CCP 2011, 98-102] 
 




