

Compressed Linear Algebra for Large-Scale Machine Learning

Ahmed Elgohary², <u>Matthias Boehm¹</u>, Peter J. Haas¹, Frederick R. Reiss¹, Berthold Reinwald¹

¹ IBM Research – Almaden

² University of Maryland, College Park

IBM Research

Motivation

- Problem of memory-centric performance
 - Iterative ML algorithms with read-only data access
 - Bottleneck: I/O-bound matrix vector multiplications

→ Crucial to fit matrix into memory (single node, distributed, GPU)

 Goal: Improve performance of declarative ML algorithms via lossless compression

Baseline solution

- Employ general-purpose compression techniques
- Decompress matrix block-wise for each operation
- Heavyweight (e.g., Gzip): good compression ratio / too slow
- Lightweight (e.g., Snappy): modest compression ratio / relatively fast

© 2016 IBM Corporation

Our Approach: Compressed Linear Algebra (CLA)

Our Setting: Apache SystemML

Overview

- Declarative ML algorithms with R-like syntax
- Hybrid runtime plans single-node + MR/Spark

ML Program Compilation

- Statement blocks → DAGs
- Optimizer rewrites
- ➔ Automatic compression

Distributed Matrices

- Block matrices (dense/sparse)
- Single node: matrix = block
- → CLA integration via new block

Data Characteristics

- Tall & skinny; non-uniform sparsity
- Low col. card.; col. correlations

LinregCG (Conjugate Gradient)

Xv X = read(\$1); # n x m matrix 1: y = read(\$2); # n x 1 vector2: ν^τΧ maxi = 50; lambda = 0.001; 3: intercept = \$3; 4: X^T(w *(Xv) 5: . . . 6: (t(X) %*% r =norm_r2 = sum(r * r); p = -r; X^TX 7: w = matrix(0, ncol(X), 1); i = 0; 8: while(i<maxi & norm_r2>norm_r2_trgt) { 9: q = (t(X) %*% (X %*% p))+lambda*p; 10: alpha = norm_r2 / sum(p * q); 11: 12: w = w + alpha * p;13: old norm r2 = norm r2;r = r + alpha * q;14: norm r2 = sum(r * r);15: beta = norm r2 / old norm r2;16: 17: p = -r + beta * p; i = i + 1;**18:** } 19: write(w, \$4, format="text");

Column-based compression schemes

Matrix Compression Framework

Overview compression framework

- Column-wise matrix compression (values + compressed offset lists)
- Column co-coding (column groups, encoded as single unit)
- Heterogeneous column encoding formats

Uncompressed **Compressed Column Groups** Column encoding Input Matrix $\mathbf{RLE}\{\mathbf{2}\}$ OLE{1,3} $(OLE{4})$ $UC{5}$ formats $\{9\}\{8.2\} || \{7,6\}\{3,4\}\{7,5\} || \{2.1\}\{3\}$ 2.19 6 0.990.99 $\frac{3}{7}$ 9 43 $\frac{2}{5}$ 0.730.736 1 4 1 2 Offset-List (OLE) $9 \quad 6 \quad 2.1 \quad 0.05$ 6 3 0.054 _1_ 3 Run-Length (RLE) $9 \ 5$ 7 7 3 3 50.429 6 0.423 4 2.1 0.61 0 3 8 9 0.61 $\overline{7}$ Uncompressed $\overline{7}$ 8.2 5 3 0.8910 10 0.89Columns (UC) 3 9 43 0.070.073 49 0 0.920.9276 2.1 0.54 9 0.543 0 4 3 0.160.16

Automatic compression planning

- Selects column groups and encoding formats per group (data dependent)

Operations over Compressed Matrix Blocks

Matrix-vector multiplication

Naïve: for each tuple, pre-aggregate values, add values at offsets to q
 Example: q = X v, with v = (7, 11, 1, 3, 2)

9*11**=99**.2 55 25 54 6.3 9

134.5 160.4 162.8 32.5 155 133.1 125.8 161.4 34.3

162.3

Vector-matrix multiplication

- Naïve: cache-unfriendly on input (v)
- Cache-conscious: again use horizontal, segment-aligned scans

Compression Planning

- Goals and general principles
 - Low planning costs
 → Sampling-based techniques
 - Conservative approach
 Prefer underestimating S^{UC}/S^C + corrections
- Estimating compressed size: S^C = min(S^{OLE}, S^{RLE})
 - # of distinct tuples d_i: "Hybrid generalized jackknife" estimator [JASA'98]
 - # of OLE segments b_{ii}: Expected value under maximum-entropy model
 - # of non-zero tuples z_i: Scale from sample with "coverage" adjustment
 - # of runs r_{ij}: maxEnt model + independent-interval approx. (r_{ijk} in interval k
 - ~ Ising-Stevens + border effects)
- Column Group Partitioning
 - Exhaustive grouping: O(m^m)
 - Brute-force greedy grouping: O(m³)
 - Start with singleton groups, execute merging iterations
 - Merge groups with max compression ratio
 - ➔ Bin-packing-based grouping

Compression Algorithm

- Transpose input X
- Draw random sample of rows S
- Classify
 - For each column
 - Estimate compression ratio (with S^{UC} = z_iα)
 - Classify into C^{C} and C^{UC}

Group

- Bin packing of columns
- Brute-force greedy per bin

Compress

- Extract uncomp. offset lists
- Get exact compression ratio
- Apply graceful corrections
- Create UC Group

Algorithm 2 Matrix Block Compression **Input:** Matrix block **X** of size $n \times m$ **Output:** A set of compressed column groups \mathcal{X} 1: $C^{\mathrm{C}} \leftarrow \emptyset$, $C^{\mathrm{UC}} \leftarrow \emptyset$, $\mathcal{G} \leftarrow \emptyset$, $\mathcal{X} \leftarrow \emptyset$ 2: // Planning phase - - -3: $\mathcal{S} \leftarrow \text{SAMPLEROWSUNIFORM}(\mathbf{X}, sample_size)$ 4: for all column k in X do classify $cmp_ratio \leftarrow \hat{z}_i \alpha / \min(\hat{S}_k^{\text{RLE}}, \hat{S}_k^{\text{OLE}})$ 5: if $cmp_ratio > 1$ then 6: 7: $C^{\mathrm{C}} \leftarrow C^{\mathrm{C}} \cup k$ 8: else $C^{\mathrm{UC}} \leftarrow C^{\mathrm{UC}} \cup k$ 9: 10: $bins \leftarrow \text{RUNBINPACKING}(C^{\text{C}})$ // group 11: for all bin b in bins do 12: $\mathcal{G} \leftarrow \mathcal{G} \cup \text{GROUPBRUTEFORCE}(b)$ 13: // Compression phase - -14: for all column group \mathcal{G}_i in \mathcal{G} do // compress do 15: $biglist \leftarrow \text{EXTRACTBIGLIST}(\mathbf{X}, \mathcal{G}_i)$ 16:17: $cmp_ratio \leftarrow GETEXACTCMPRATIO(biglist)$ if $cmp_ratio > 1$ then 18: $\mathcal{X} \leftarrow \mathcal{X} \cup \text{COMPRESSBIGLIST}(biglist)$, break 19: $k \leftarrow \text{REMOVELARGESTCOLUMN}(\mathcal{G}_i)$ 20: $C^{\mathrm{UC}} \leftarrow C^{\mathrm{UC}} \cup k$ 21:22:while $|\mathcal{G}_i| > 0$ 23: return $\mathcal{X} \leftarrow \mathcal{X} \cup \text{CREATEUCGROUP}(C^{\cup C})$

Experimental Setting

Cluster setup

- 1 head node (2x4 Intel E5530, 64GB RAM), and
 6 worker nodes (2x6 Intel E5-2440, 96GB RAM, 12x2TB disks)
- Spark 1.4 with 6 executors (24 cores, 60GB), 25GB driver memory

Implementation details

- CLA integrated into SystemML (new rewrite injects compress operator)
- For Spark/MR: individual matrix blocks compressed independently

ML programs and data

- 6 full-fledged ML algorithms
- 5 real-world data sets + InfiMNIST data generator (up to 1.1TB)

Selected baselines

- Apache SystemML 0.9 (Feb 2016) with uncompressed LA ops (ULA)
- General-purpose compression with ULA (Gzip, Snappy)

Micro-Benchmarks: Compression Ratios and Time

• **Compression ratios** (S^{UC}/S^C, compared to uncompressed in-memory size)

Dataset	Dimensions	Sparsity	Size (GB)	Gzip	Snappy	CLA
Higgs	11M x 28	0.92	2.5	1.93	1.38	2.03
Census	2.5M x 68	0.43	1.3	17.11	6.04	27.46
Covtype	600K x 54	0.22	0.14	10.40	6.13	12.73
ImageNet	1.2M x 900	0.31	4.4	5.54	3.35	7.38
Mnist8m	8.1M x 784	0.25	19	4.12	2.60	6.14

Compression time

Decompression Time (single-threaded, native libs, includes deserialization)

Gzip	88-291 MB/s
Snappy	232-639 MB/s
CLA	not required

Micro-Benchmarks: Vector-Matrix Multiplication

End-to-End Experiments: L2SVM

L2SVM over Mnist dataset

- End-to-end runtime, including HDFS read + compression
- Aggregated mem: 216GB

End-to-End Experiments: Other Iterative ML Algorithms

In-memory dataset
 Mnist40m (90GB)

Algorithm	ULA	Snappy	CLA
MLogreg	630s	875s	622s
GLM	409s	647s	397s
LinregCG	173s	220s	176s

- Out-of-core dataset
 Mnist240m (540GB)
 - Up to 26x and 8x

Algorithm	ULA	Snappy	CLA
MLogreg	83,153s	27,626s	4,379s
GLM	74,301s	23,717s	2,787s
LinregCG	2,959s	1,493s	902s

Conclusions

Summary

- CLA: Database compression + LA over compressed matrices
- Column-compression schemes and ops, sampling-based compression
- Performance close to uncompressed + good compression ratios

Conclusions

14

- General feasibility of CLA, enabled by declarative ML
- Broadly applicable (blocked matrices, LA, data independence)

• SYSTEMML-449: Compressed Linear Algebra

- Transferred back into upcoming Apache SystemML 0.11 release
- Testbed for extended compression schemes and operations

Tue Sep 6, 2pm I2: SystemML on Spark

Wed Sep 7, 11.15am D3b: CLA Poster

Fri Sep 9, 9am-5.30pm Tutorial @BOSS

SystemML is Open Source: Apache Incubator Project since 11/2015 Website: http://systemml.apache.org/ Sources: https://github.com/apache/incubator-systemml

Backup: Roofline Analysis Matrix-Vector Multiply

- Single Node: 2x6 E5-2440 @2.4GHz–2.9GHz, DDR3 RAM @1.3GHz (ECC)
 - Max mem bandwidth (local): 2 sock x 3 chan x 8B x 1.3G trans/s \rightarrow 2 x 32GB/s
 - Max mem bandwidth (single-sock ECC / QPI full duplex) \rightarrow 2 x 12.8GB/s
 - Max floating point ops: 12 cores x 2*4dFP-units x 2.4GHz \rightarrow 2 x 115.2GFlops/s

Operational Intensity (Flops/Byte)

Backup: Common Data Characteristics

Backup: Column Encoding Formats

Offset-List Encoding

- Offset range divided into segments of fixed length $\Delta^{s}=2^{16}$
- Offsets encoded as diff to beginning of its segment
- Each segments encodes length w/ 2B, followed by 2B per offset

Run-Length Encoding

- Sorted list of offsets encoded as sequence of runs
- Run starting offset encoded as diff to end of previous run
- Runs encoded w/ 2B for starting offset and 2B for length
- Empty/partitioned runs to deal with max 2¹⁶ diff

Backup: Scalar Operations and Aggregates

Backup: Comparison CSR-VI (CSR Value Indexed)

Compression Ratio

Dataset	Sparse	#Distinct	CSR-VI	D-VI	CLA
Higgs	N	8,083,944	1.04	1.90	2.03
Census	N	46	3.62	7.99	27.46
Covtype	Y	6,682	3.56	2.48	12.73
ImageNet	Y	824	2.07	1.93	7.38
Mnist8m	Y	255	2.53	N/A	6.14

Operations Performance

[K. Kourtis, G. I. Goumas, N. Koziris: Optimizing Sparse Matrix-Vector Multiplication Using Index and Value Compression, CF 2008, 87-96]

Backup: Parameter Influence and Accuracy

13.2%

56.6%

0.6%

16.0%

[C. Constantinescu, M. Lu: Quick Estimation of Data Compression and De-duplication for Large Storage Systems. CCP 2011, 98-102]

CLA Est.

39.4%